

LA-UR-20-30179

Approved for public release; distribution is unlimited.

Title: Maintaining and Improving the Los Alamos LANSCE Accelerator

Author(s): Milton, Stephen Val

Intended for: Accelerator Safety Workshop, 2020-09-14/2020-09-17 (Lemont, Illinois,

United States)

Issued: 2020-12-11

Maintaining and Improving the Los Alamos LANSCE Accelerator

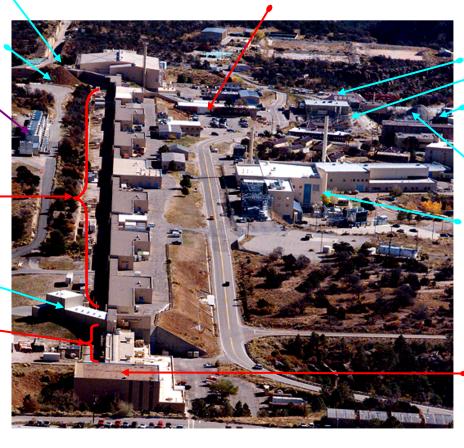
Stephen Milton
Los Alamos National Laboratory
Accelerator Operations and Technology

2020 Accelerator Safety Workshop 16 September 2020

The LANSCE LINAC provides flexible time-structured H+ / H- beams serving five experimental areas

Ultra Cold Neutron (UCN) Area

Central Control Room


Proton Radiography (pRad)

Cooling Towers

Side-coupled-cavity accelerator and equipment building (100-800 MeV)

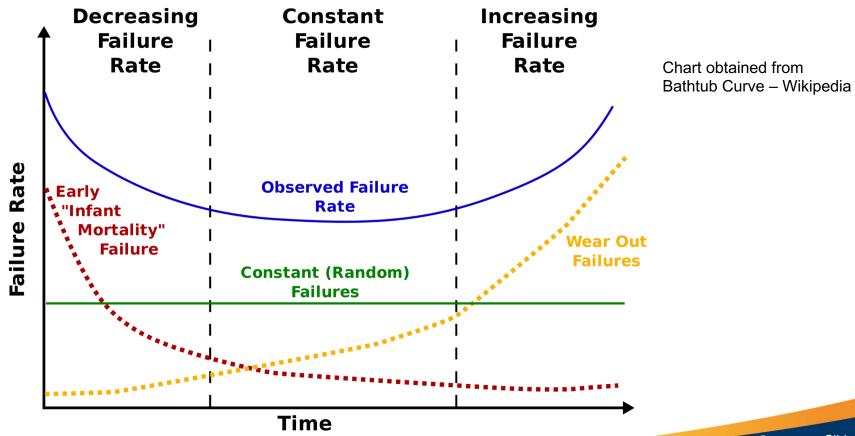
Isotope Production Facility

Drift tube accelerator and equipment building (0.75-100 MeV)

Lujan Center ___1L Target

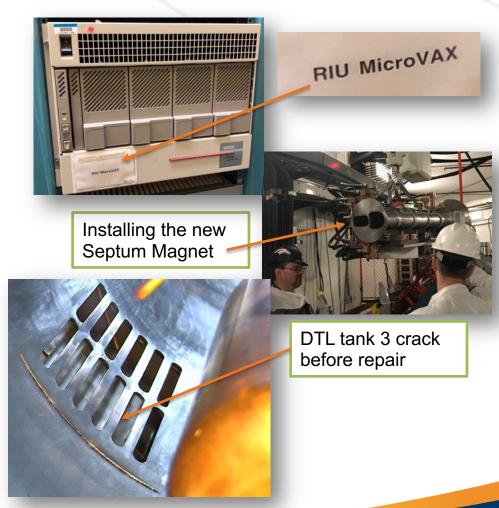
WNR (Weapons Neutron Research) Target 4 Target 2

Bldq-365 Tunnel


Injector (0-0.75 MeV)

- Operations began in 1972
 - Risk mitigation completed in 2015
- 800-MeV (1 MW) proton beam
- Highly capable/flexible facility
 - 100 MeV to 800 MeV beam energy
 - 5 target stations
 - 3 neutron spallation targets
 - 16 beam lines
 - Time structure of beam allows for a large dynamic range of experiments
- Dynamic proton radiography
- Neutron radiography
- Structural material properties
- Nuclear properties of materials
- Fundamental physics
- Isotope production

Overall the machine and systems have been great, but we are starting to suffer on the old age end of the bathtub curve.



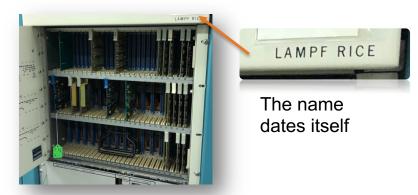
LANSCE Operations has been having some significant issues over the past few years due to aging infrastructure

- 2017: Tuning issues
 - Human performance
 - Slow controls system, poor diagnostics and old software
- 2018: Proton Storage Ring (PSR) Septum magnet
 - Premature failure
 - Potentially due to previous year difficulties
 - Lack of completed spare
- 2018 (or well before) 2019
 - 2018 forced 60 Hz operations
 Significant impact on Weapons Neutron Research (WNR) program
 - Drift Tube Linac (DTL) Tank 3 Crack
 - Took a lot of time to understand, determine the cause, and to determine the best method of repair

The "Crack" of 2019

We are still using very old technology, Cockcroft-Walton Accelerators, that pose significant operational risk

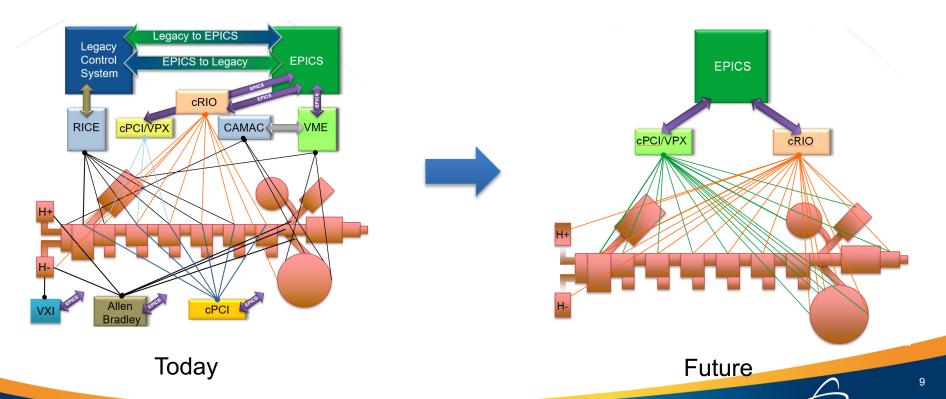
- We currently have two in operation, one for protons and the other for H⁻ (We once had 3. One for a polarized source
- We do not have a complete set of spares!
 And the companies that built many of these components no longer exists
- These are true work horses, and very capable, but have been replaced around the world by more modern and more capable RFQ-based injector systems
- We could choose to
 - Invest in RFQ injectors
 - Spend money to buy the necessary spares
 - Do both to burn down risk

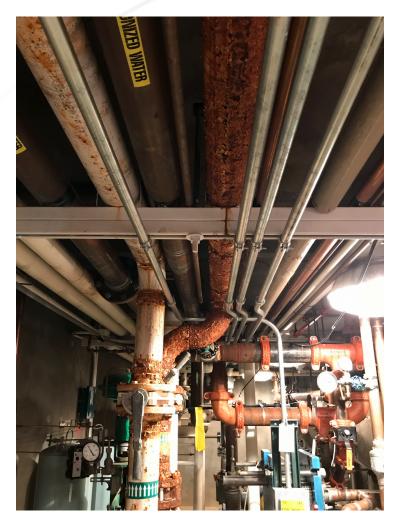


CW/DTL vulnerabilities aside, we continue to push forward to improve overall performance and reliability

- LLRF
 - Old analog cards are being replaced with modern digital LLRF system
 - Expect recapitalization money in 2022, so until then we will do what we can with programmatic funds.

- Controls and instrumentation
 - Modern architecture and updated equipment
 - We have \$7.4M in recapitalization funds to make significant progress on this over FY 20 and FY 21


- · Others in the works
 - 1L Target replacement (2021, funded)
 - CCL quad coils (2020-2022, partly funded)
 - Module 1 power system (2020, funded)
 - · Completes all DTL RF power system upgrade


But reality sometimes forces one to do things a little at a time and you get into "hybrid space".

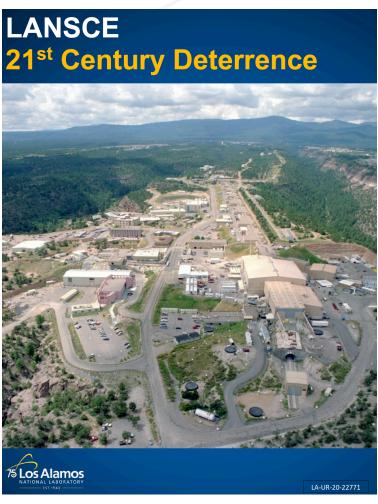

- Example: The LANSCE Control system
 - We currently need to maintain a hybrid mixture of old and new
 - This has HUGE consequences and is fraught with unintended consequences

One must also be careful to worry about the aging infrastructure that supports the accelerator systems

So how does one proceed?

- Look at your needs and future plans
 - Do you
 - Maintain as is
 - Grow current capability
 - Transition to something new
 - all while correcting the age related issues
- Determine your risks
 - Categorize them (High, Medium, Low)
 - Likelihood
 - Impact
 - Cost
 - Time and Effort
- Set a path, a plan, and execute
 - Or at least try

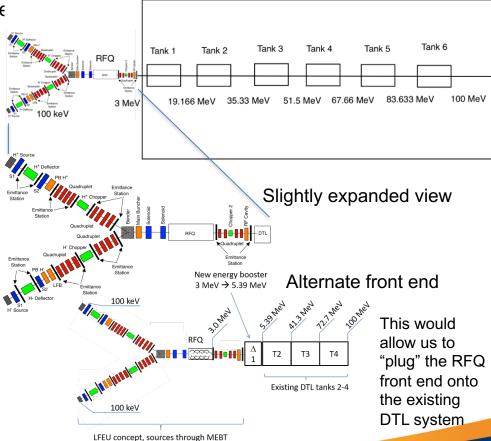
		Negligible	Minor	Moderate	Significant	Severe		
Likelihood	Very Likely	Low Med	Medium	Med Hi	High	High		
	Likely	Low	Low Med	Medium	Med Hi	High		
	Possible	Low	Low Med	Medium	Med Hi	Med Hi		
	Unlikely	Low	Low Med	Low Med	Medium	Med Hi		
	Very Unlikely	Low	Low	Low Med	Medium	Medium		


In addition, we are working to implement maintenance analytics and focus on a process-based system

- What is maintenance analytics?
 - It is taking all the available operational and performance data along with historical facts, compiling it all and using this information in a proactive fashion to analyze and determine maintenance needs in a predictive or prognostic fashion.
 - We will also use this information to optimize delivery metrics based on available resources
 - Time
 - People
 - Money
- Move from expert-based system to a process-based system
 - Need to develop long-term robustness.
 - This is not possible with an expert-based system

A document highlighting the path to LANSCE 2050 was recently published

- Most immediate concern
 - Aging Cockcroft-Walton and Drift-tube linac (DTL) system
 - Failed weld in DTL during 2019 run resulted in many weeks of lost user time
- LANSCE Front-End Upgrade (LFEU)
 - Replace Cockcroft-Walton and Drift-Tube Linac system with an RF Quadrupole-based system
 - Improvements (From document)
 - Higher peak and integrated current capabilities
 - Lower emittance
 - To experimental areas
 - Improved resolution for pRad
 - Increased throughput at the Lujan center
 - Increased capability at WNR
 - Increased production capability at IPF



A pre-conceptual design report for the LFEU has recently been generated

- Primary Purpose
 - Provide a proof-of-concept docume
 - Generate initial cost and schedule

Key performance Parameters

v1.11 – 2019-12-10			Value			
Parameter	Symbol	Unit	Threshold	Objective	Ultimate	
Beam delivery						
Kinetic energy	E_k	MeV	100	100 - 211	100 - 211	
Micropulse current [‡]	I _{ub}	mA	16.5	35	50	
Macropulse duration	τωρ	μs	625	850	1000	
Rep rate	free	Hz	120	120	240	
Capture fraction	η _{ini}	-	0.8	0.9	0.9	
Min. avg. current	<i></i>	mA	0.75	3(1)	6	
Norm. emittance	E _{ms.a}	π mm mr	0.35	0.30	0.25	
Fractional momentum Spread	Δp/p	-	0.003	0.003	0.003	
Bunch length	l _b	mm	5	5	5	
Source service Recovery		hours	24	6	<1	
Beam Gating						
Pattern			Arbitrary			
Minimum flattop		# bunches	5	1	1	
Maximum flattop		μs	$ au_{ m mp}$			
Contrast ratio			7.7.108:1	7.7·10 ⁸ :1	1.5·10 ⁹ :1	
Rise/fall time		ns	10	2	2	
Prebuncher I _{up} mult.			2.5	2.5	5	
Source						
Maintenance interval		Weeks	5	8	16	
Downtime per service		Days	3	2	1	
Minor fault recovery		Sec	180	120	< 60	
Minor fault rate		#/day	10	3	<1	

Overview of Design Scope

Some summary thoughts

- The metaphorical question
 - Do you continue to maintain the old car or do you go out and buy a new one?
 - We think our "old car", the LANSCE accelerator system, still has quite a bit of life in it.
 - However, we might one day find ourselves with Abraham Lincoln's ax.

Legend: When Lincoln was once asked about his ax he replied,

"I've had this same ax my whole life. I've only had to replace the handle 3 times and the head twice."

Painting of Abraham Lincoln by Norman Rockwell

^{*}Abraham Lincoln was the 16th president of the United States and is best known for seeing the US through the civil war and abolishing slavery in the US.

Questions?

